LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2015

ST 1822-STATISTICAL MATHEMATICS

Date: 07/11/2015
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer all the questions.

1. a) If $y_{n} \leq x_{n} \leq z_{n}$ for every n and $\lim _{n \rightarrow \infty} y_{n}=L=\lim _{n \rightarrow \infty} z_{n}$ then prove that $\lim _{n \rightarrow \infty} x_{n}=L$. OR
b) Prove that $1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\cdots$ converges.
c) (i) Let $\sum a_{n}$ be a divergent series of positive numbers. Then prove that there is a sequence $\left\{\varepsilon_{n}\right\}$ of positive numbers which converges to zero but $\sum \varepsilon_{n} a_{n}$ diverges.
(ii) Prove that a monotonic increasing sequence which is bounded above is convergent.

OR

d) (i) If $\left\{a_{n}\right\}$ is a decreasing sequence of positive terms converging to zero then prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
(ii) Prove that the sequence $\left\{\frac{1}{n}\right\}$ has the limit $L=0$.
2) a) State and prove Taylor's formula with Lagrange's form of the renainder.

OR
b) If f is continuous at ' a ' then prove that $|f|$ is continuous at a but the converse is not true.
c) If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ then prove that the following statements are true

$$
\begin{equation*}
\text { (i) } \lim _{x \rightarrow a}(f(x) g(x))=L M \text { (ii) } \lim _{x \rightarrow a}\left(\frac{1}{g(x)}\right)=\frac{1}{M} \text { if } M \neq 0 \text {. } \tag{15}
\end{equation*}
$$

d) (i) Prove that the number e is irrational.
(ii) State and prove inverse function theorem.
3. a) If f^{\prime} and g^{\prime} are continuous on $[a, b]$, then prove that $\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-$ $\int_{a}^{b} f^{\prime}(x) g(x) d x$.

OR

b) If f is continuous function on the closed bounded interval $[a, b]$ and if $\varphi^{\prime}(x)=f(x)$ for $x \in[a, b]$ then prove that $\int_{a}^{b} f(x) d x=\varphi(b)-\varphi(a)$.
c) (i) Let g be continuous on $[a, b]$ and f has a derivative which is continuous and never changes sign on $[a, b]$. Then prove that for some $c \in[a, b], \int_{a}^{b} f(x) g(x) d x=f(a) \int_{a}^{c} g(x) d x+$ $f(b) \int_{c}^{b} g(x) d x$.
(ii) If $f \in R[a, b]$ is continuous at $x_{0} \in[a, b]$ and if $F(x)=\int_{a}^{x} f(t) d t$ where $a \leq x \leq b$ then prove that $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
(10+5)

OR

d) (i) Let f be bounded function on $[a, b]$. If P_{1} and P_{2} are any two partitions of $[a, b]$ then prove that $L\left[f ; P_{2}\right] \leq U\left[f ; P_{1}\right]$.
(ii) If f is monotone on $[a, b]$ then prove that f is Riemann integrable on $[a, b]$.
4. a) If the rank of a matrix A of order (m, n) is r then prove that there is atleast one set of r linearly independent columns of A and every column can be written as a linear combination of any such set.

OR

b) State and prove Cauchy-Schwarz inequality.
c) (i) Prove that the $k n$-vectors $A_{1}, A_{2}, \ldots, A_{k}$ are linearly dependent if and only if the rank of the matrix $A=\left[A_{1}, A_{2}, \ldots, A_{k}\right]$ with the given vectors as columns is less than k. Also prove that they are independent if and only if the rank is equal to k.
(ii) If the $k n$-vectors $A_{1}, A_{2}, \ldots, A_{k}$ are linearly independent then prove that any $k+1$ linear combinations of these n-vectors are linearly dependent.
d) (i) Let V be a vector space over F, not consisting of the zero vector alone then prove that V contains atleast one set of linearly independent vectors $A_{1}, A_{2}, \ldots, A_{k}$ such that the collection of all linear combinations X of the form $X=t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{k} A_{k}$ where $t^{\prime} s$ are arbitrary scalars from F, is precisely V. Moreover, prove that the integer k is uniquely determined for each V.
(ii) Find the complete solution of non-homogeneous system $x_{1}-x_{2}+2 x_{3}=1$ and $2 x_{1}+x_{2}-x_{3}=2$.

5 a) Prove that the characteristic roots of a real symmetric matrix are real.

OR

b) Apply the Gram Schmidt orthonormalization process to the vectors $(1,0,1),(1,0,-1),(0,3,4)$ to obtain an orthonormal basis for R^{3}.
c) Reduce the quadratic form $x_{1}^{2}+5 x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{2} x_{3}+6 x_{1} x_{3}$ to canonical form through an orthogonal transformation.

OR

d) (i) Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. be distinct characteristic roots of a matrix A and let $X_{1}, X_{2}, \ldots, X_{k}$ be any non zero characteristic vectors associated with these roots respectively then prove that $X_{1}, X_{2}, \ldots, X_{k}$ are linearly independent.
(ii) Find the inverse of the matrix $A=\left(\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$.

